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Abstract
Motivated by the thermal denaturation of DNA, we consider two interacting three-dimensional
macromolecular chains, bound to each other, in a medium at thermal equilibrium from about
room temperature up to about the melting one (Tm), at which they become unbound. We outline
models for the non-equilibrium evolution of the double-stranded system, based upon the
Smoluchowski equation, and allow for heterogeneities, excluded-volume effects and
hydrodynamic interactions. A moment method leads us to approximate the Smoluchowski
equation by a one-dimensional differential equation for the lowest order moment, containing a
global effective potential between the two strands. We concentrate on the time duration (τ )
required for thermal denaturation to occur, for long times and temperature T � Tm. Here τ is
approximated by the so-called mean first passage time (MFPT) for the relative separation of the
centres of mass of the two chains. An approximate formula for the MFPT is obtained and
employed for estimates. The consistency of the MFPT with experimental results is discussed
for both Rouse and Zimm regimes.

1. Introduction

Denaturation of double-stranded DNA (dsDNA) is a very
important phenomenon involving biological, chemical and
physical features [1, 2]. Here, we shall treat one
of its physical aspects, namely, thermal denaturation at
temperature Tm, which has attracted extensive researches in
the last decades [2–27]. Above thermal denaturation, three-
dimensional dsDNA splits into two separate single three-
dimensional chains (ssDNA). Although our main interest is
dsDNA for temperature T < Tm, for a wider understanding,
we shall also outline and refer to some properties of ssDNA
below and above Tm. At thermal equilibrium, both dsDNA and
ssDNA have known persistence lengths dds (T < Tm) [4, 9]
and dss < dds (T > Tm) [28–33], respectively, and they can
be regarded as formed by certain effective monomers having
lengths dds and dss. The dynamics of dsDNA and ssDNA
inside a fluid (a ‘solvent’, at thermal equilibrium) and the
influence of hydrodynamic interactions have been investigated
experimentally [34, 35].

3 Present Address: Departamento de Matemáticas, E. T. S. de Ingenieros
Industriales and Instituto de Matemática Aplicada a la Ciencia y la Ingenierı́a
(IMACI), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain.

We shall focus on the time evolution of the double-
stranded system, initially out of thermal equilibrium, inside
a ‘solvent’ at thermal equilibrium at T , so as to analyse the
characteristic time duration τ required for thermal denaturation
of dsDNA (with total molecular weight Mtot) to occur at T �
Tm. Several models [36–41], with different interpretations,
have yielded approximate expressions and/or estimates for
τ displaying the behaviour: τ ∝ Mα

tot, in terms of a
constant exponent α (see Volkenshtein [2], section 7.5, for
discussions and comments about various models). Early
experiments aimed to measuring τ (also referred to as the
characteristic time for unwinding or as the time required
for strand separation), yielded values for α certainly smaller
than the currently accepted value: α � 2. A comparative
critical discussion about the former experiments on τ was
presented by Spatz and Crothers [42]. A value α � 2
is quoted in [39]. Further experiments, measuring the time
(τ ) required for DNA to be converted to a state in which
essentially complete unwinding occurs and the two strands
become separated, have yielded successively α � 2 [43, 44]
and α approximately 2 (specifically, compatible with α �
2.3) [42]. It is adequate to quote the following statements by
Volkenshtein ([2], page 262) regarding the state of the subject
by 1983: (1) ‘Experiments show that τ is proportional to M2

tot
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for a number of phage DNAs’. (2) ‘. . . the kinetics of the
melting of DNA corresponds to an entire spectrum of times τ .
The true theory of this phenomenon has not yet been worked
out: serious difficulties are encountered in the investigation
of the relation between the attainment of internal equilibrium
and unwinding . . .’. It seems adequate to revisit τ , to present
an alternative approach to and a possible interpretation for
it, different from those previously proposed [36–41], and to
discuss possible relationships to the effective monomers in
dsDNA and to the influence of hydrodynamic interactions
on the dynamics of dsDNA and ssDNA, provided by the
experiments mentioned above [34, 35]. We stress that τ

refers to the melting of dsDNA as a whole, but not to that
of specific sections of the double helix. We shall not treat
the kinetics of different sections (several hundreds base pairs
long) of dsDNA, which follow specific relaxation mechanisms
with different relaxation times. They require procedures
(specifically, equations typical of chemical kinetics, but not
the Smolukowski equation) quite different from those to be
employed here, and have been analysed thoroughly (see [45]
and references therein).

This paper is organized as follows. Section 2 will
summarize various features and simplifying assumptions for
dsDNA and ssDNA. For large times, off-equilibrium dsDNA
(T < Tm) can also be regarded, by assumption, as formed
by effective (statistically independent) monomers, similar to
those for equilibrium. Section 3 outlines the off-equilibrium
models in the discretized case. Section 4 describes the moment
method and global effective potentials. In section 5, τ is
approximated by some mean first passage time (MFPT) for the
separation (y) of the centres of mass of the two strands, and
presents approximate formulae and estimates for the MFPT.
General studies on the MFPT are well documented [46–48].
By regarding y as a stochastic variable and for T � Tm,
the MFPT is the average time elapsed until y leaves, for the
first time, the domain for dsDNA towards the configuration
of two separate ssDNAs at T � Tm. Section 6 contains the
conclusions. Appendices A, B and C summarize justifications
for sections 3 and 4.

2. Some general features and survey of
approximations

2.1. Equilibrium: dsDNA (T � Tm)

We suppose that the region, inside which the strands move,
is a sphere of very large radius R0. In this section, we
deal with three-dimensional dsDNA (say, B-DNA), at thermal
equilibrium for T in an interval below and about Tm. For B-
DNA, Tm � 360 K. For T < Tm dsDNA is a bound system of
two single three-dimensional ssDNAs. In turn, each ssDNA is
formed by nucleotides, each of which includes a base, a sugar
ring and a phosphate group [1, 2]. The masses of the four bases
A, C , G and T differ from their average mass by less than 5,
13, 18 and 11%, respectively. We shall regard each ssDNA as a
discretized chain formed by N (�1) nucleotides as basic units,
all with equal mass M (the total mass of one single ssDNA
being N M).

The most energetic degrees of freedom in ssDNA and
dsDNA are the electronic ones. Next, there are the large
covalent–bond interactions, with energies somewhat smaller
than the (largest) electronic ones. Large covalent–bond
interactions are responsible for the very existence of each
ssDNA (either isolated or belonging to dsDNA) as a connected
extended object, for a range of T s appreciably (or much)
larger than that from room temperature up to Tm. The
vibrations of individual nucleotides, subject to those large
covalent–bond interaction, about their equilibrium positions
along each ssDNA, yield essentially constant bond lengths
d between successive nucleotides in each ssDNA [27]. We
shall take d � 7.2 Å, for each ssDNA in B-DNA. In
the single (r th, r = 1, 2) strand, residual covalent–bond
interactions V (r)

a , weaker than those yielding constant d ,
constrain rotational degrees of freedom and give rise to almost
constant bond angles, the cosines of which are β(0) (�0.8 for
each ssDNA in B-DNA), consistently with the worm-like chain
model. Constraints in macromolecules and the subsequent
approximate simplification in their degrees of freedom play a
crucial role, which continue to motivate active researches [49].
In this work, we shall treat V (r)

a and other interactions
(equation (3)) and the resulting statistical description of ssDNA
and dsDNA through classical statistical mechanics. In each
single ssDNA of dsDNA at thermal equilibrium, the β(0)-
constraining V (r)

a lead to certain effective monomers (named
e-monomers in this work), as natural molecular blocks on
suitable medium and large length scales [27]. Each e-monomer
is a single substrand of ssDNA formed by ne nucleotides, and
different e-monomers behave as statistically independent from
one another, approximately. All e-monomers are assumed to
have approximately the same effective length de. Each ssDNA
in dsDNA could be regarded as formed by L(= (N − 1)/ne �
N/ne � 1) e-monomers. We shall now discuss briefly ne and
de, by following appendix D of [27]. Let z(r)

l be the vector from
the origin up to the end of the lth e-monomer, l = 1, . . . , L:
the components of z(r)

l are (z(r)
l )α, α = 1, 2, 3. The statistical

average of z(r)2
l equals [50] d2

e + ned2xd , with:

de = dn1/2
e

[
1 + β(0)

1 − β(0)

]1/2

, (1)

xd = −2β(0)

ne

1 − β(0)ne

(1 − β(0))2
. (2)

Different e-monomers in the r th strand can be regarded
approximately as statistically independent if ned2xd can be
neglected compared to d2

e . We shall suppose that d2
e

is adequately larger than ned2xd , so that such statistical
independence holds approximately. In such a case, the
following standard property holds: the statistical average of the
product (z(r)

l )α(z(r)
l′ )α′ equals, approximately, 3−1d2

e δl,l′δα,α′ ,
the δs being the Kronecker ones. Then, for given d = 0.72 nm
and β(0) � 0.8 for B-DNA, equations (1) and (2) and the
assumption that d2

e be adequately larger than ned2xd allow to
assess reasonable ranges for both ne and de for an e-monomer
in each ssDNA of dsDNA. Lower limits of those ranges are
about ne = 20, de � 10 nm. The upper limits of those
ranges are relatively close (although, strictly, still exclude)

2
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values corresponding to the persistence length dds � 50 nm
(corresponding to 150 nucleotides) for dsDNA. In fact, ne =
150 and de � 50 nm do belong to the physically allowed ranges
and are close to their upper limits, provided that d = 0.72 and
β(0) � 0.94 (instead of β(0) � 0.8). In [27], ne and de were
chosen relatively close to the lower limits. In this work, we
shall be less restrictive and allow for ne and de to take on, in
principle, any values in those ranges, even close to the upper
limits (say, relatively close to dds).

All e-monomers in dsDNA are subject to additional
effective residual intra-chain and inter-chain interactions
(weaker than all covalent ones). These additional interactions
will be described by an effective potential V (equation (3))
among the e-monomers with length de, in the domain of
validity of Gaussian and long-distance approximations [27].
Typical potential energies of the A–T pair are appreciably
smaller in absolute value than those of the C–G pair: such
heterogeneities should be taken into account in the effective
potential V among the e-monomers in dsDNA. The important
role played by heterogeneities on the cooperative melting of
DNA sections (several hundred base pairs long) has been
demonstrated [45]. Heterogeneities played an important role
in [20, 26]. In connection with that, see [51] for the
relevance of disorder (without excluded-volume interactions).
V includes three effective interactions [27]: (a) between all
pairs of (complementary or mate) e-monomers at the same
positions in the different chains (V0), (b) between different e-
monomers in the same chain (

∑2
r=1 V (r)

1 ), self-interactions of
one e-monomer with itself being also included, (c) between
pairs of e-monomers at unequal or non-complementary
positions in the different chains (V2). (a), (b) and (c) should be
repulsive for short distances. (b) and (c) take care of stacking
interactions, which play a role in thermal denaturation [19]. (a)
and, eventually, (c) give rise to attraction at intermediate and
large distances. In the r th chain, r = 1, 2, R(r)

l and R(r)
l+1 will

represent the three-dimensional position vectors of the origin
and the end of the lth e-monomer, l = 1, . . . , L. We shall
suppose that:

V = V0 +
2∑

r=1

V (r)
1 + V2, (3)

V0 =
L+1∑
l=1

v0,l(|R(1)

l − R(2)

l |), (4)

V (r)

1 =
L+1∑
l=1

n1∑
n=0

v1;l,n(|R(r)

l+n − R(r)

l |), (5)

V2 =
L∑

l=1

n2∑
n=1

[
v2;12;l,n(|R(1)

l+n − R(2)

l |)

+ v2;21;l,n(|R(2)

l+n − R(1)

l |)
]
, (6)

with integers n1 and n2 (n2 � L), v1;l,n = 0 if l + n > L + 1
while v2;12;l,n = 0 and v2;21;l,n = 0 if l +n > L +1. All vs are
positive for short distances (�de). For instance, v0,l could be
modelled by a Morse potential. The dependences of v0,l , v1;l,n ,
v2;12;l,n and v2;21;l,n on their corresponding subscripts account
for the heterogeneities arising from the (A–T) versus (G–C)
interactions. To describe those heterogeneities requires to have

information on the sequences of nucleotides along dsDNA: to
handle such information and to extract reliable consequences
from it is not easy. It has been argued that excluded-volume
effects in dsDNA could be disregarded in various ambient
conditions (not only in ‘θ ’ conditions): see section 4.1 in [9].
On the other hand, several aspects of excluded-volume effects
in dsDNA have been investigated [52–57]. In this work,
we shall allow for excluded-volume effects in V , mostly
in

∑2
r=1 V (r)

1 (as n1 is not �L). Detailed information on
heterogeneities and stacking in V will play no role in order
to estimate roughly the dsDNA time duration τ , as we shall
see. Electrical conductivity in DNA is another interesting
phenomenon, actively investigated (see [58, 59] and references
therein). The DNA models considered in this work will not
include electrical conductivity effects.

Different choices for the e-monomers (and, hence, for de)
would yield somewhat different V s. The model considered
in this work makes sense in a range of T s up to Tm.    The
additional residual intra-chain and inter-chain interactions
modelled by V lead to regard dsDNA also as formed by certain
effective monomers (specifically referred to as ds-monomers),
statistically independent of one another [4, 9]. A ds-monomer
has persistence length dds, is formed by two substrands of
nucleotides and should not be confused with the single-strand
e-monomers, with length de. For B-DNA, a ds-monomer has
dds � 50 nm (or, equivalently, a Kuhn length about 100 nm)
and about 150 nucleotides [4, 9]: these are relatively close
to the numerical values of the upper limits of the physically
allowed ranges for de and ne for e-monomers, as commented
above.

The classical partition function Z2 for the three-
dimensional discretized dsDNA at thermal equilibrium in T �
Tm reads, by including the CM contribution (and correcting
some misprints) in [27]:

Z2 =
[

KBT

2π h̄2

]2(N−1) [
M N KB T

4π h̄2

Mtot KBT

2π h̄2

]3/2

× 4π R3
0d4(N−1) Z

3(N/M N−1)3

2∏
r=1

Z (r)
R , (7)

where

Z =
[

4π R3
0

3

]−1 ∫ [
2∏

r=1

L+1∏
l′=1

d3R(r)
l′

]
Weq, (8)

Weq =
[

2∏
r=1

L∏
l=1

WG(R(r)
l+1 − R(r)

l ; 2d2
e )

]
exp[−(KBT )−1V ],

(9)

WG(R(r)

l+1 − R(r)

l ; 2d2
e ) =

[
3

2πd2
e

]3/2

× exp[−3(R(r)
l+1 − R(r)

l )2/(2d2
e )], (10)

KB is Boltzmann’s constant and Mtot = 2M N is the total mass
of dsDNA. Z (r)

R , given by equations (C.4) and (C.2) in [27], are
T -independent and will not be relevant here. WG denotes the
Gaussian distribution for the lth e-monomer in the r th strand.

3
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2.2. Equilibrium: ssDNA (T > Tm)

Above denaturation (T > Tm), the residual intra-chain and
inter-chain interactions become negligible (V � 0) and
dsDNA becomes two separate ssDNAs. No covalent bonds
in DNA (thermal) denaturation are broken (p 342 in [1]),
provided that, as we assume here, T (>Tm) be not too high.
It seems natural that the electronic and the large covalent–
bond interactions continue to be as effective in each separate
ssDNA as in dsDNA, and yield the same constant bond lengths
d � 7.2 Å in each separate ssDNA (for B-DNA). The
weaker residual covalent–bond interactions V (r)

a also persist in
each separate ssDNA and, so, give rise in them to constant
bond angles, with cosines β(0)

ss , and to effective monomers
(ss-monomers) with length dss, statistically independent on
one another. A physical question is whether such residual
covalent–bond interactions in each separate ssDNA equal those
in the ssDNAs bound in dsDNA, so that β(0)

ss and dss for
ssDNA equal, respectively, β(0) and de for dsDNA, or not.
dss has been experimentally measured [28–33]. A value
dss � d � 0.7 nm has been reported [29], although other
measurements yielded values in the range 1.5 nm �dss �
3 nm [28, 30–33]. We shall accept that dss is about 2 nm, as
a reasonable choice between two extreme possibilities. Then,
dss > d seems to confirm the existence of residual covalent
interactions constraining bond angles β(0)

ss in each separate
ssDNA [1, 27]. However, dss < de also appears to indicate
that, in reality, those residual covalent interactions in each
separate ssDNA differ somewhat from those in ssDNAs bound
in dsDNA, as a consequence of the denaturation transition
at Tm. In [27], it was assumed that those residual covalent
interactions were much the same in separate ssDNAs and in
ssDNAs bound in dsDNA and, hence, that dss = de. Each
ss-monomer is a single strand formed by nss nucleotides.
Then, each separate ssDNA could be regarded as formed by
Lss(= (N − 1)/nss � N/nss � 1) ss-monomers. We shall
discuss nss and β(0)

ss , by replacing, in equations (1) and (2),
de, ne and β(0) by dss, nss and β(0)

ss , respectively. For given
d � 0.7 nm and dss � 2 nm, we also use equations (1) and (2).
Then, the criterion that different ss-monomers are statistically
independent approximately (d2

ss being adequately larger than
nssd2xd) allow to assess reasonable ranges for both nss and
β(0)

ss . One possible choice is nss = 3, β(0)
ss � 0.7. One would

also expect some effective potential (including excluded-
volume effects) for each separate ssDNA, qualitatively similar
to one of the V (r)

1 s in equation (5): however, such effective
potential for each separate ssDNA should be quantitatively
different from the V (r)

1 s in ssDNAs bound in dsDNA, as a
consequence of the denaturation transition at Tm.

2.3. Non-equilibrium

As typical Brownian particles are usually larger and more
massive than the molecules forming the liquid (the ‘solvent’)
inside which the former evolve, the resulting approximate
physical picture is understood [60–62]. That picture should
also apply, plausibly, for macromolecules (having nucleotides
as molecular subunits) in ‘solvents’, as we shall outline
below. Leaving aside phosphate groups and sugar rings,

the masses of A, C, G and T (in units of the hydrogen
mass) are, roughly, 135, 111, 151 and 114, respectively,
while the mass of a molecule of water (the ‘solvent’) is
about 18. The motions of the macromolecular subunits
are considered for temporal and spatial scales much larger
than those characterizing the ‘fast’ microscopic motions of
the ‘solvent’ molecules. Then, the ‘solvent’ would behave
effectively as having relaxed to a state of approximate thermal
equilibrium at absolute temperature T , much quicker than the
macromolecular subunits (adiabatic approximation). On those
scales, the ‘solvent’ behaves as an environment at thermal
equilibrium producing friction on (and, possibly, mediating
interactions in) the macromolecule. A typical macromolecular
subunit would collide with many fluid molecules during
temporal intervals in which the position of that subunit
would not change appreciably. Then, the distributions of
the momenta of those macromolecular subunits, due to their
interactions with the ‘solvent’, would relax approximately to
thermal equilibrium on suitable temporal and spatial scales
more quickly than the distributions of their positions: those
expectations would be in contrast with the behaviour of a
dilute gas, where the momentum of a generic particle relaxes
to equilibrium only by collisions with other particles in the gas.

Next, we turn to dsDNA as a non-equilibrium system, at
T in an interval �Tm, with the same internal interactions as
at equilibrium, and immersed in a ‘solvent’. Plausibly, in the
time evolution and, at least for suitably large spatial scales and
times, the two-chain system can also be regarded as formed
by e-monomers of length de, similar to those for equilibrium,
which are also approximately statistically independent from
one another, and subject to the same interactions (say,
equation (3)). The remarks in the previous paragraph in this
section also hold if those macromolecular subunits are the e-
monomers. The ‘solvent’, at thermal equilibrium, should also
produce friction on the individual momenta of the e-monomers
with length de of each chain, and could mediate additional
hydrodynamic interactions among e-monomers in each single
strand. Thus, the accepted wisdom of the Rouse and Zimm
models for one chain, as summarized in [63–65], will be
extended directly to dsDNA in section 3.

3. Non-equilibrium Smoluchowski equations for
dsDNA

Smoluchowski equations for single macromolecules, re-
garded as many-Brownian-particle systems, are well docu-
mented [60–66]. dsDNA, off-equilibrium at the initial time
t = 0, evolves towards thermal equilibrium at T � Tm, for long
time t . Let H (r)

l,l′ account for friction effects on the lth and the
l ′th e-monomers in the r th strand due to the ‘solvent’, and al-
low for hydrodynamic interactions between those e-monomers,
mediated by the ‘solvent’. The matrix formed by all H (r)

l,l′ ,
l, l ′ = 1, . . . , L + 1 (L + 1 being included as L � 1), is
assumed to be Hermitian and positive definite. Let [R] de-
note the set of all R(r)

l (r = 1, 2 and l = 1, . . . , L + 1), and
let W = W ([R]; t) be the probability distribution for an ar-
bitrary configuration of the effective e-monomers in dsDNA,

4
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at 0 � t < +∞. By extending directly single-strand equa-
tions (for instance, equation (4.1) in [63]), using de as effective
length for any e-monomer in ssDNAs and the same V as in
equation (3), W fulfils the Smoluchowski equation for dsDNA
(T � Tm):
∂W

∂ t
= SW, (11)

SW = KBT
2∑

r=1

L+1∑
l,l′=1

∇R(r)′
l

H (r)

l,l′

×
{

∇R(r)′
l′

W + W∇R(r)′
l′

[
3

2d2
e

2∑
s=1

L∑
l′′=1

× (R(s)′
l′′+1 − R(s)′

l′′ )2 + V

KBT

]}
. (12)

A justification of equations (11) and (12) is outlined in
appendix A. In the r th chain, r = 1, 2, let z(r)

l = R(r)
l+1 − R(r)

l
correspond to the lth effective e-monomer, l = 1, . . . , L. [z]
will denote the set of all z(r)

l . Also, let RCM denote the centre
of mass (CM) of both chains and let y be the relative position
vector of the centres of mass of the two chains. y = |y|
can be regarded, in the framework of chemical kinetics, as the
‘reaction coordinate’. One has:

R(r)
l = RCM + (−1)r y/2 +

L∑
l′=1

α
(r)
l,l′ z

(r)
l′ . (13)

For l = 1, . . . , L, α
(r)
l,l′ = L−1l ′ and −L−1(L − l ′), for

l ′ = 1, . . . , l − 1 and l ′ = l, . . . , L, respectively. Also,
α

(r)
L+1,l′ = L−1l ′, for l ′ = 1, . . . , L. Upon replacing all R(r)

l s
by RCM, y and [z] using equation (13), SW becomes:

SW = KBT
1

4L2
Hhyd∇2

RCM
W + SinW, (14)

The constant Hhyd = ∑2
r=1

∑L+1
l,l′=1 H (r)

l,l′ (> 0) accounts for
both friction and possible hydrodynamic interactions, due to
the ‘solvent’, on the CM of the bound two-chain system and
on y, as equation (17) for SinW will display. We factor out the
CM evolution: W = WCM(RCM; t)Win. Equation (14) yields:

∂WCM

∂ t
= KBT

1

4L2
Hhyd∇2

RCM
WCM. (15)

The equilibrium solution WCM,eq of equation (15) equals a
constant. Equation (15) displays the relaxation of the CM
of dsDNA towards thermal equilibrium (its solution WCM

approaches WCM,eq as t → +∞). Such a relaxation is
similar to those in the Rouse and Zimm models for one single
strand [63]. On the other hand, Win = Win(y, [z]; t) and:
∂Win

∂ t
= SinWin, (16)

SinWin = KBT
1

L2
Hhyd∇y

[
∇yWin + Win

1

KBT
∇yV

]

+ KBT
2∑

r=1

L+1∑
l,l′=1

[∇z(r)
l−1

− ∇z(r)
l

]H (r)
l,l′

[
(∇z(r)

l′−1
− ∇z(r)

l′
)Win

+ Win(∇z(r)
l′−1

− ∇z(r)
l′

)

(
3

2d2
e

2∑
s=1

L∑
l′′=1

(z(r)
l′′ )2 + V

KBT

)]
,

(17)

with ∇z(r)
0

≡ 0, ∇z(r)
L+1

≡ 0. V (equations (3)–(6)) is
expressed in terms of y and [z]. The equilibrium distribution
for equations (16) and (17) is Weq, given in equation (9) (recast
in terms of y and [z]). Equation (16) displays relaxation
towards thermal equilibrium (its solution Win approaches Weq

as t → +∞). A direct analysis of equation (16), in order
to estimate the dsDNA time duration τ is rather difficult. In
fact, the normal modes for each separate ssDNA (which would
facilitate the analysis) are not easy to handle.

For both Rouse and Zimm regimes, we set: (4L2)−1 Hhyd =
(2Lζ0)

−1. The Rouse regime (inclusion of friction but neglect
of hydrodynamic interactions) corresponds to H (r)

l,l′ = δl,l′/ζ ,
ζ(> 0) and δl,l′ being the friction coefficient and the Kronecker
symbol, respectively. The Stokes formula gives: ζ = 6πηβde,
η being the viscosity of the ‘solvent’. The dimensionless quan-
tity β depends on the models for the friction due to the ‘sol-
vent’: we take 0.1 � β � 1, to cover different models. For the
Rouse model, one has ζ0 = ζ . The Zimm regime includes both
friction and hydrodynamic interactions [63–65]. Since both the
CM and the y dependences refer to large scales, it may be not
unreasonable to approximate 1

4L2 Hhyd for the Zimm model by
its continuum approximation (this is, in practice, our only use
of the continuum approximation: otherwise, we consider only
discretized chains throughout this work). Moreover, for the
Zimm model, we treat the hydrodynamic interaction among
e-monomers in preaveraging approximation [63]. Under ‘θ ’
conditions, ζ0 = (3/8)(6π3)1/2ηdeL−1/2 [63], η being also the
viscosity of the ‘solvent’. For a ‘good solvent’, and including
excluded-volume effects, ζ0 = ηdeLν−1, ν(= 3/5) being the
standard excluded-volume exponent.

For T > Tm, ssDNA has a different structure, as
discussed in section 2.2. ssDNA off-equilibrium can be
described through a standard single-chain Smoluchowski
equation [60–66] with its characteristic dss (in principle, for
either Rouse or Zimm regimes). That ssDNA Smoluchowski
equation would include some effective potential, similar to
(but not identical with) V (r)

1 in equation (5), to account
for excluded-volume effects, as commented at the end of
section 2.2.

The relaxation dynamics of an elongated DNA molecule,
with one of its end point fixed by optical tweezers and subject
to a uniform flow, has been measured [34]. The results seemed
more consistent with the Zimm model than with the Rouse
one, but with an exponent of L indicating excluded-volume
effects smaller than usual (attributed to electrostatic repulsion
inside DNA [64]). On the other hand, in [35] the kinetics
of random motion of suitable macromolecular subunits in
dsDNA and ssDNA have been studied experimentally, and the
results have been analysed in the framework of the continuum
approximation. In particular, for dsDNA those subunits were
the ds-monomers, characterized by the Kuhn length 2dds �
100 nm. It was found [35] that: ‘While Zimm-type kinetics
for ssDNA corresponds to the common view on polymer
dynamics and, thus, could have been expected, the Rouse
regime observed for dsDNA is puzzling. The fact that the
hydrodynamic interactions are negligible over a wide range of
monomer motion in dsDNA is apparently related to dsDNA
semiflexibility. A large Kuhn length means that the distances
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between segments are relatively large and, respectively, the
hydrodynamic interactions between them are weak’. The
relatively large separations among effective ds-monomers for
dsDNA could be due to the repulsive phosphate interactions.

4. A moment method for the dsDNA Smolukowski
equation

4.1. Global effective potentials for dsDNA (T � Tm)

Let y = |y|. For homogeneous dsDNA at thermal equilibrium,
a global effective y-dependent potential between the two
strands has been introduced [27], by integrating over [z].
Unexpectedly, the global effective potential idea (extended for
heterogeneous dsDNA) will turn out to be certainly quite useful
off-equilibrium, in order to approximate in equations (11)
and (12) and to estimate the dsDNA time duration τ , as we
shall see. Let [dz] ≡ ∏2

r=1(
∏L

l′=1 d3z(r)

l′ ). With Weq given in
equation (9), one defines the exact global effective potential
Vg = Vg(y) for heterogeneous dsDNA as:

∫
[dz]Weq = exp[−(KBT )−1Vg(y)]. (18)

Due to rotational invariance, Vg(y) is independent on the
direction of y. The dependence of Vg(y) on y is due to V0

and V2. For y → +∞, Vg(y) does not tend to zero but
to some Vg(∞) �= 0, due to the contribution of

∑2
r=1 V (r)

1 .
Vg(y) − Vg(∞) can be expected: (i) to be positive for y = 0
and for small y up to some y1, (ii) to be negative and large
for an interval of intermediate values of y, from about y1,
up to some y2, appreciably larger than de, (iii) to increase
quite appreciably, being always negative, as y increases in
y2 � y � y3 (y3 being adequately or much larger than y2), and
(iv) to be entirely negligible for y > y3. Then (leaving perhaps
aside the transition region from small to intermediate y) the
shape of Vg(y) − Vg(∞) appears to be, quite naturally and
rather roughly, Morse-like. An upper bound 〈V 〉 = 〈V 〉(y)

has been obtained for Vg(y) in appendix B. 〈V 〉 is the global
effective potential, which extends the one introduced in [27]
for the actual heterogeneous dsDNA. We shall accept that 〈V 〉
describes the global behaviour of Vg(y) for intermediate and
large y, at least qualitatively: this will suffice in order to
estimate the time duration, as we shall see in section 5,

Approximate bounds for 〈V 〉(y) for intermediate and large
y read:

∑
i

v′
i,−

L1/2
exp

[
− bi y2

2Ld2
e

]
� 〈V 〉 −

2∑
r=1

〈V (r)
1 〉

�
∑

i

v′
i,+

L1/2
exp

[
− bi y2

2Ld2
e

]
, (19)

∑2
r=1〈V (r)

1 〉 (containing excluded-volume interactions) is
constant.

∑
i is a finite sum of about n2 + 1 terms (the same

n2 as in equation (6)). bi are positive numerical constants. v′
i,±

are constant. See appendix B. We suppose that v′
i,± < 0.

Then, having accepted that 〈V 〉 accounts for global features of
Vg(y) for intermediate and large y, it follows that Vg − Vg(∞)

is attractive (<0) for intermediate and large y. In the long-
distance approximation 〈V 〉 contains L1/2de as a large length
scale. For y � L1/2de, 〈V 〉 − ∑2

r=1〈V (r)

1 〉 → 0 and, hence,
Vg − Vg(∞) is negligible as well. For y � y2, equation (19)
yields a small 〈V 〉 and, hence, an attempt to use 〈V 〉 in order
to obtain qualitative information on Vg fails.

4.2. Moments and approximations for dsDNA (T � Tm)

The following moment method will enable to approximate
equation (16) for Win by a simpler distribution f = f (y; t),
depending only on y and t . In turn, f = f (y; t) will yield
an approximate approach towards the dsDNA time duration τ

in section 5. The essentials of the moment method employed
in this section are outlined in appendix C in a simpler context.
Let [n] denote a suitable set of non-negative integers (n being
the sum of all them). Different sets [n] correspond to the
same n. We shall introduce the denumerably infinite set W[n]
of all polynomials in z(r)

l′ , which are orthonormalized with
respect to the positive (weight) function Weq, provided that one
integrates over all z(r)

l′ s but no integration over y be performed:∫ [dz]WeqW[n]W[n′ ] = δ[n],[n′ ]. δ[n],[n′ ] denotes a product of
Kronecker delta’s. The order of the polynomials W[n] increases
as n does. The W[n]s also depend on y parametrically. We
introduce the following t- and y-dependent moments ω[n] =
ω[n](y; t) of Win and the associated moment expansion:

ω[n] =
∫

[dz]WinW[n], Win = Weq[n′ ]ω[n′ ]W[n′ ], (20)

(ω[n′ ] = 0 if n′ < 0). Like in appendix C, one gets an
infinite recurrence relation for all moments ω[n], for all [n].
In the simplest approximation, we retain only the equation
in that recurrence for n = 0, and we keep in that equation
only the contribution due to ω[0]. See appendix C. The
resulting approximate equation for ω[0] (the counterpart of
equation (C.5)) reads for both Rouse and Zimm regimes:

∂ω[0]
∂ t

� 2KBT

Lζ0
W[0]∇y

[(∫
[dz]Weq

)
(∇y(ω[0]W[0]))

]
.

(21)
From section 4.1, one has: W[0] = [∫ [dz]Weq]−1/2 =
exp[(2KBT )−1Vg(y)]. Vg is the exact global effective potential
introduced in section 4.1. The equilibrium solution of
equation (21) is W−1

[0] . Then, equation (21) becomes:

−∂ω[0]
∂ t

� 2KBT

Lζ0
[−∇2

y + Vg,1]ω[0], (22)

Vg,1 = Vg,1(y) = − ∇2
y Vg

2KBT
+

( ∇yVg

2KBT

)2

, (23)

y could be regarded as a ‘slow’ variable, compared to all
z(r)

l′ . Such a dominance of ‘slow’ variables is conceptually
important. It constitutes an extension, to the double-
stranded system, of related approximations (based upon
different scales for time evolution) holding for many cases,
like various cooperative systems (lasers, chemical reactions,
fluids, . . .) [67], the propagation of light in photorefractive
materials [68] and others. Notice that Vg,1 → 0 for y → +∞.

6
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The Hermitian operator (KBT/(2Lζ0))[−∇2
y + Vg,1] in the

three-dimensional equation (22) has no negative eigenvalues
and it has only a continuous non-negative spectrum (sweeping
the whole interval (0,+∞)). This corresponds to the fact that
‘. . . the kinetics of the melting of DNA corresponds to an entire
spectrum of times τ ’ ([2], p 262).

One can factorize directly radial (y) and angular
dependences (y/y) in ω[0] in equation (22). For the long
t analysis, it will suffice to restrict to ω[0] = ω[0](y; t),
independent on y/y. Equation (22) yields directly the
following one-dimensional radial Smoluchowski equation for
f = f (y; t) = y2ω[0] exp[−(2KBT )−1Vg]:

∂ f

∂ t
� 2KBT

Lζ0

∂

∂y

[
∂ f

∂y
+ f

(
− 2

y
+ 1

KBT

∂Vg

∂y

)]
. (24)

5. Mean first passage time for dsDNA (T � Tm)

We shall estimate approximately the time duration τ

for thermal denaturation of dsDNA (with total molecu-
lar weight Mtot = 2M N), at T � Tm. As al-
ready commented before, efforts to provide an unambigu-
ous and quantitative definition of τ meet conceptual diffi-
culties. To illustrate the latter once more, notice that the
one-dimensional operator −(2KBT/(Lζ0))(∂/∂y)[(∂/∂y) +
(−(2/y) + (KBT )−1(∂Vg/∂y))] in equation (24): (i) has only
a continuous non-negative infinite spectrum (its eigenvalues λc

lie in 0 � λc < +∞, without negative eigenvalues) and, then,
(ii) lacks discrete strictly positive eigenvalue (the inverse of the
smallest one of which being a natural candidate for τ ). This
continuous spectrum is intimately connected to that quoted
in [2] (p 262).

From the approximate study of Vg in section 4.1, for
T < Tm one expects that the probability for the bound double-
stranded structure: (i) is small for 0 � y � y1, (ii) is
concentrated in some interval y1 � y � y2, (iii) decreases as y
increases in y2 � y � y3 (y3 being appreciably larger than y2),
and (iv) is negligible for y > y3. It seems natural to use 〈V 〉
in order to infer the scales of Vg, for intermediate and large
y: specifically, we shall suppose that (19) holds for y � y2,
and that y3 � L1/2de. We shall try to give some meaning to
τ as the average time required for y, regarded as a stochastic
variable, to leave the region y1 � y � y2 towards y � y3

and y � y3 for the first time, at T � Tm. This expectation
is qualitatively consistent with views expressed in section 2.8
in [8]. At T � Tm, the double-stranded structure melts, with
very small probability for becoming bound again (enzymes
would act on each strand to initiate DNA replication, but the
latter process is excluded from our analysis). Then, it may
be not unreasonable to interpret τ as some mean first passage
time (MFPT) for equation (24) with T � Tm, with suitable
boundary conditions. The MFPT is also closely connected
to the theory of diffusion-controlled reactions [66]. In what
follows, we shall suppose that T � Tm. Based upon [46–48],
a MFPT τ (y) is the solution of the so-called ‘adjoint equation’
corresponding to equation (24), namely, of:

2KBT

Lζ0

[
∂2τ (y)

∂y2
−

(
− 2

y
+ 1

KBT

∂Vg

∂y

)
∂τ(y)

∂y

]
= −1,

(25)

in y0 � y � y3, with the (‘absorbing’) boundary condition
τ (y3) = 0 and with another one, to which we now turn. It
seems reasonable that y0 � y2 and to avoid an ‘absorbing’
boundary condition at y0. In fact, Vg is repulsive at short
distances, and the physical reason for y to leave stochastically
the region y1 � y � y2 is thermal denaturation towards
large y3 at T � Tm. As a simple possibility, we impose the
‘reflecting’ boundary condition ∂τ(y)/∂y = 0 at y = y0. We
shall not need to specify y0 in a more precise way. The solution
of (25) with those boundary conditions is:

τ (y) = Lζ0

2KBT

∫ y3

y

dy ′ exp[(KBT )−1Vg(y ′)]
y ′2

×
(∫ y′

y0

dy ′′y ′′2 exp[−(KBT )−1Vg(y ′′)]
)

, (26)

[46, 47] give solutions of MFPT equations like (25) with:
(i) reflecting and absorbing boundary conditions at y3 and
y0, respectively, and, conversely, (ii) reflecting and absorbing
boundary conditions at y0 and y3, respectively (with which (26)
agrees). The solution with the boundary conditions (i) has been
applied in [46] to determine the time for recombination of a
diffusing molecule in the short-range Morse-like potential U
of a fixed molecule. The Morse-like shape of U (figure 24
in [46]) is qualitatively similar to that for Vg − Vg(∞). For
dsDNA at T � Tm, we interpret the dsDNA time duration,
approximately, as τ � τ (y), for y about or somewhat larger
than y2 � y0 (with y < y3). Recall that (19) holds for y � y2,
and that we use 〈V 〉 as a guide for qualitative behaviours and
estimates of Vg for intermediate and large y. As a first and
rough approximation, we neglect Vg in (26) for T � Tm. Then,
the dominant contribution to (26) is:

τ � τ (y) � Lζ0

12KBT
y2

3 �
[

Mtot

2Mne

]2 d2
e ζ0

12KBTm
, (27)

equation (27) can also be obtained by extending directly
approximate techniques employed in the transition state
theory [69] (related, in turn, to the so-called flux-over-
population method [46]): for brevity, we shall omit the latter
approximation procedure. Use has been made of y3 � L1/2de

and L � Mtot/(2Mne) in (27). Notice that ζ0 was given in
section 3 for both Rouse and Zimm dynamics. For the Rouse
regime, (27) becomes:

τ � πβ

2

[
Mtot

2Mne

]2 d3
e η

KBTm
. (28)

For the Zimm model, with ‘θ ’ conditions, (27) gives:

τ � (6π3)1/2

32

[
Mtot

2Mne

]1.5 d3
e η

KBTm
. (29)

For the Zimm model, with ‘good solvent’, (27) yields:

τ �
[

Mtot

2Mne

]1.6 d3
e η

12KBTm
. (30)

Experimental values for τ , for a number of phages, appear to
follow a M2

tot behaviour (as summarized in [2], section 7.5),

7
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which appears to be more consistent with (28) for the Rouse
regime than with (29) and (30) for the Zimm dynamics. In [37],
the behaviour τ � c0 Mα

tot, with α = 5/2, has been predicted.
In [41], lower and upper bounds on the behaviour of τ were
given: τ > cl M

3/2
tot and τ < cu M3

tot (cl and cu being constants).
The procedures employed in [37] and in [41] did not apply
either the Smolukowski or moment methods or MFPTs and,
so, were very different from those used in the present work.

For rough order of magnitude estimates, we take
Mtot/2M = 4 × 105 (Mtot of order 108 times the hydrogen
mass), η about the viscosity of water (10−2 poise) and β �
0.16. Experimental values for τ (for instance, for coli DNA)
are about 1 min: see [2] (section 7.5) and [41]. For de = 10 nm
and ne = 20, equation (28) (Rouse regime) gives τ � 0.4 min.
On the other hand, equations (29) and (30) (Zimm model) yield
τ between 10−1 and 10−2 min. A Rouse regime for dsDNA
would seem not to agree with [34], but it would be consistent
with [35]. For de = dds = 50 nm and ne = 150, equation (28)
(Rouse model), with the same Mtot/2M , η and similar values
for β also gives τ about half a minute.

Even if a M2
tot behaviour seems accepted [2], it may be

adequate to comment the following. The experiments by Spatz
and Crothers [42], although consistent with a M2

tot behaviour,
seemed to favour M2.3

tot , which would appear to amplify the
disagreement with a Zimm behaviour. Possibly, (26) could
yield results for τ approximately or numerically similar to a
behaviour Mα

tot, with an exponent α a bit higher than 2, if
the contributions of Vg were not neglected (so that one would
keep Vg(y ′)− Vg(y ′′)). A proper numerical assessment of such
corrections is not an easy task and lies outside our scope here.

A rate constant (or reaction rate) at T � Tm could then be
introduced as τ−1 [46, 47].

6. Conclusions and final comments

We shall summarize the main assumptions, techniques and
approximations in our approach:

(1) At equilibrium with T � Tm, each ssDNA in dsDNA
can be regarded as formed by effective monomers (e-
monomers) with size de (the same holds for ssDNA with
T > Tm, with other monomers).

(2) A Smoluchowski equation for dsDNA is assumed, in
terms of the same e-monomers as for equilibrium, so
as to describe approximately its irreversible long-time
relaxation towards thermal equilibrium, from about room
temperature up to T � Tm. The e-monomers interact
through an effective potential V , which includes stacking,
heterogeneities and excluded-volume effects.

(3) By integrating suitably the equilibrium distribution over
all configurations of the e-monomers, but not over the
relative position vector (y) of the centres of mass of the
two ssDNAs, an exact global effective potential Vg is
introduced for T � Tm. Vg includes heterogeneities,
stacking and excluded-volume effects only in an average
way and it depends only on y = |y|. By extending [27],
an approximation 〈V 〉 for Vg is given and employed for
qualitative estimates for intermediate and large distances.

(4) By integrating suitably over all configurations of the e-
monomers, the Smoluchowski equation is replaced by
an equivalent infinite recurrence relation for suitable
moments, which depend on y and t . The recurrence
is approximated by the single equation for the lowest
moment ω[0] = ω[0](y; t). The latter equation: (i)
yields the correct irreversible long-time relaxation towards
thermal equilibrium, (ii) is determined by Vg. One restricts
to ω[0] depending only on y = |y| (assuming no angular
dependences) and on t .

(5) The time duration τ for the complete separation of dsDNA
into two ssDNA, for T � Tm, is approximated by
some MFPT for y (regarded as a stochastic ‘reaction
coordinate’). In so doing, we apply concepts of reaction-
rate theory [46–48]. The MFPT depends on ω[0] and, so,
on Vg.

(6) An explicit formula for the MFPT (26) is given (assuming
reflecting and absorbing boundary conditions).

(7) Expecting that the leading contributions to τ come from
intermediate and large distances, the contribution of Vg is
estimated qualitatively using 〈V 〉 also for intermediate and
large distances.

(8) By neglecting Vg-dependent contributions, based upon (7),
equation (26) gives a simple approximate formula for τ

(equation (27)), for T � Tm. Equation (27) is influenced
by de and possibly, through ζ0, by hydrodynamic
interactions and excluded-volume effects, but (due to the
neglect of Vg) not by either heterogeneities or stacking.

The above items (3) (Vg and 〈V 〉), (4) (moments,
recurrence relation and approximations thereof) and (5)
(approximation of τ by some MFPT) are some main results
of this work. To the best of our knowledge, previous
approaches to τ [36–41] did not make use of either global
effective potentials, or such moment methods or the MFPT’s.
Although previous experiments [34] would favour a Zimm
behaviour for dsDNA, the Rouse regime for it seems supported
by recent experimental results [35]. The approximate (28)
for τ with Rouse regime (another result of this work)
yields a M2

tot behaviour and numerical estimates, which
seem consistent with experimental results for a number of
phages [2, 39, 42–44]. That approximate consistency should,
however, be taken with caution and reservations, due to
the various approximations made (in particular, those in
items (7) and (8)) and to the negligibility (or magnitude)
of hydrodynamic interactions and excluded-volume effects.
Further experimental data on the latter and, even, on τ , and
theoretical analysis would seem adequate for dsDNAs.

Acknowledgments

GFC gratefully acknowledges the Spanish Ministry of
Education and Science for a Juan de la Cierva Grant, and so
does RFA-E for financial support through Project FPA2004-
02602. GFC thanks Professor Victor M Perez-Garcia for kind
hospitality at the Universidad de Castilla-La Mancha. RFA-
E is an Associate Member of Instituto de Biocomputacion
y Fisica de Sistemas Complejos, Universidad de Zaragoza,
Zaragoza, Spain.

8



J. Phys.: Condens. Matter 20 (2008) 035101 G F Calvo and R F Alvarez-Estrada

Appendix A. Kramers versus Smoluchowski
equations

In one spatial dimension x , let a particle of mass m and
momentum p evolve, subject to: (i) a real potential V = V (x),
and (ii) friction effects and to an additional interaction, both
due to a ‘solvent’ and represented by the real function H (x) >

0. Let the probability distribution W = W (x, p; t) for the
particle fulfil the irreversible Kramers equation [47, 48]:

∂W

∂ t
+ p

m

∂W

∂x
− ∂V

∂x

∂W

∂p
= ∂

∂p

1

H (x)

[
p + mKBT

∂

∂p

]
W.

(A.1)
The equilibrium solution of equation (A.1) is: Weq =
exp[−(KBT )−1(p2/(2m) + V )]. We shall introduce the
following moments Wn = Wn(x; t) (n = 0, 1, 2, . . .) of
W : Wn = (π1/22nn!)−1/2

∫ +∞
−∞ dpHn(p/(2mKBT )1/2)W

where Hn(q) denotes the Hermite polynomial of order n.
Equation (A.1) implies the following infinite three-term linear
recurrence relation for all Wns (n = 0, 1, 2, . . .):

∂Wn

∂ t
+

[
KBT

2m

]1/2 [
(2(n + 1))1/2 ∂Wn+1

∂x
+ (2n)1/2

×
(

∂Wn−1

∂x
+ 1

KBT

∂V

∂x
Wn−1

)]
= − n

H (x)
Wn,

(A.2)

with W−1 = 0. If W = Weq, then Weq,0 is proportional to
exp[−(KBT )−1V ] and Weq,n = 0, n = 1, 2, . . .. We perform
the long-time approximation in equation (A.2) for n + 1, by
neglecting ∂Wn+1

∂ t and (2(n + 2))1/2(∂Wn+2/∂x), so that:

Wn+1 � − (2(n + 1))1/2 H (x)

(n + 1)

[
KBT

2m

]1/2

×
[
∂Wn

∂x
+ 1

KBT

∂V

∂x
Wn

]
. (A.3)

By replacing Wn+1 from (A.3) into the exact equation (A.2) for
n, we get:

∂Wn

∂ t
+

[
KBT

2m

]1/2 [
(2n)1/2

(
∂Wn−1

∂x
+ 1

KBT

∂V

∂x
Wn−1

)]

= −
[

n

H (x)
− KBT

m

∂

∂x
H (x)

(
∂

∂x
+ 1

KBT

∂V

∂x

)]
Wn,

(A.4)

together with (A.2) for n = 0, 1, . . . , n − 1. Due to the
damping term −nH (x)−1Wn in (A.4), all Wn , n = 1, 2, . . .,
relax faster than W0, and Wn (n > 0) relax the faster the larger
n is. Equation (A.4) for n = 0 dominates the long t approach
towards Weq.

Based upon the above one-dimensional model, we shall
justify, in outline, equations (11) and (12). The roles played by
x and p will be played by all e-monomer vectors R(r)

l , and by
their canonically conjugate momenta P(r)

l . Let [P] denote the
set of all P(r)

l . Let WK = WK([R], [P]; t) be the probability
distribution for a configuration of the double-stranded system,
with given [R] and [P], at time t . By assumption, WK evolves
through a Kramers equation, which generalizes directly (A.1),

with V (x) replaced by [ 3
2d2

e

∑2
s=1

∑L
l′′=1(R

(s)
l′′+1−R(s)

l′′ )2+ V
KBT )]

and (H (x))−1 by [(H (r))−1]l,l′ . (H (r))−1 is the inverse of
the matrix formed by all H (r)

l,l′ , which appear in (12). We

introduce moments for WK regarding all P(r)
l , using suitable

Hermite polynomials in the latter, by generalizing directly Wn .
The actual moment of zeroth order, (π−1/4)3(L+1)

∫ [d3P]WK,
will be identified with the distribution W in (11). The
Kramers equation for WK implies an infinite linear hierarchy
for its moments, which generalizes (A.2). In the latter
hierarchy, we perform a long-time approximation similar to
that in (A.3): this implements the physical fact that the
distributions of all e-monomer momenta P(r)

l should relax
towards thermal equilibrium faster than those for R(r)

l . The
counterpart of (A.4) for the moment of zeroth order of WK has
the slowest relaxation and is just equation (11). The inverse
powers of L in (15), (17) and (21) amount to amplify friction.
They also support equations (11) and (12) as large-friction
approximations for the Kramers equation for WK, consistently
with [47].

Appendix B. Global effective potential

We recall that all WGs are concentrated in |z(r)
l | � de.

For y = 0 and for small y up to some y1,
∫ [dz]Weq =∫ [dz][∏2

r=1

∏L
l=1 WG(z(r)

l ; 2d2
e )] exp[−(KBT )−1V ] could be

expected to be dominated by the integration domains with
|z(r)

l | � de. On the other hand, the potentials v0,l , v1;l,n , v2;12;l,n
and v2;21;l,n contributing to V can be reasonably expected to
be positive (repulsive) and, possibly, large for short distances.
Then, for y = 0 and for small y up to some y1,

∫ [dz]Weq could
be expected to be small and, hence, Vg(y) would be positive.
A similar qualitative argument would yield the positivity of
Vg(y) − Vg(∞) for y = 0 and for small y up to some y1.

We introduce the Gaussian averaging:

〈A〉 ≡
∫

[dz]
[

2∏
r=1

L∏
l=1

WG(z(r)

l ; 2d2
e )

]
A. (B.1)

One has:
∫ [dz]Weq = exp[−(KBT )−1Vg(y)] � exp

[−(KBT )−1〈V 〉(y)], with 〈V 〉 � Vg. Then:

〈V 〉 = 〈V0〉 +
2∑

r=1

〈V (r)
1 〉 + 〈V2〉. (B.2)

We shall be primarily interested on 〈V 〉 for intermediate and
large distances. Let us consider 〈V0〉. We express v0;l in (4)
in terms of its Fourier transform ṽ0;l(q) (with wavevector q)
and employ (13). 〈exp iq(R(1)

l − R(2)
l )〉 is computed through

Gaussian integrations. One gets:

〈V0〉 =
L+1∑
l=1

1

(2π)3

∫
d3qṽ0;l(q) exp(−iqy) exp(−q2al), (B.3)

al = d2
e

18L
[6(l − 2−1(L + 1))2 + 2−1(L2 − 1)]. (B.4)

As L is large, small |q| values dominate (consistent with
the regime of intermediate and large distances). Integrating

9
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approximately over q:

〈V0〉 � 1

8π3/2

L+1∑
l=1

ṽ0;l(0)

a3/2
l

exp[−(4al)
−1 y2]. (B.5)

For homogeneous (hom) dsDNA formed only by complemen-
tary AT bases with attractive interaction: ṽ0;l(0) ≡ ṽ0;AT(0) <

0. Through a numerical study, (B.5) yields:

〈V0〉hom;AT � 27ṽ0;AT(0)

2π3/2d3
e L1/2

exp[−(4Ld2
e )

−127y2] (B.6)

and so on for GC. The Gaussian average of V0 with two
Gaussians (corresponding to both ssDNA in dsDNA) behaves,
for large y, as a Gaussian. We now turn to heterogeneous
dsDNA. Let both distributions of complementary AT and GC
bases contain, respectively, NAT and NGC pairs occupying the
N sites in an aperiodic way, so that NAT + NGC = N and
NAT/NGC is neither very large nor very small. For the two
lth e-monomers, ṽ0;l(0) amounts to some averaging over the
aperiodic distributions of complementary AT and GC bases
in those e-monomers. The GC interaction is more attractive
than the AT one. Then, that averaging indicates that 〈V0〉
for heterogeneous dsDNA is larger (smaller) then that for
homogeneous dsDNA formed only by GC (AT):

〈V0〉hom:GC � 〈V0〉 � 〈V0〉hom:AT < 0, (B.7)

equation (B.7) provides bounds on 〈V0〉 for intermediate
and large y.

∑2
r=1〈V (r)

1 〉 is y-independent. Like for
〈V0〉, each of the n2 (n2 � L) contributions to 〈V2〉
for heterogeneous dsDNA is subject, under analogous
assumptions, to approximations similar to (B.5)–(B.7), but
with slightly different numerical constants. This is easily
checked for n2 = 1. All that lead to bi and v′

i;±(< 0) in (19).

Appendix C. Moments and recurrence relation

We shall illustrate the essentials of the moment method with
the following Smoluchowski equation for the distribution W̃ =
W̃ (y, z; t) (−∞ < y, z < +∞):

∂W̃

∂ t
= σ

∂

∂y

[
∂W̃

∂y
+ W̃

∂ Ṽ

∂y

]
+ σ

∂

∂z

[
∂W̃

∂z
+ W̃

∂ Ṽ

∂z

]
,

(C.1)
with constant σ > 0. Equation (C.1), y, z, σ and Ṽ are
caricatures of equations (11) and (12), y, all z(r)

l′ , Hhyd and
H (r)

l,l′ and V plus the Gaussian contribution in (12), respectively.

Ṽ = Ṽ (y, z) is a potential, which fulfils: (i) Ṽ → +∞
(as z2 times a constant) if |z| → +∞, for fixed y, and (ii)
Ṽ → Ṽ0(z) if |y| → +∞, for fixed z. The equilibrium
distribution for equation (C.1) is W̃eq = exp(−Ṽ ). We shall
introduce the denumerably infinite set Wn , n = 0, 1, 2, . . ., of
all polynomials in z, which are orthonormalized with respect to
the positive (weight) function W̃eq, provided that one integrates
in −∞ < z < +∞ (but not over y). The order of the
polynomials increases as n does. One has the orthonormality
relation:

∫
dz W̃eqWn Wn′ = δn,n′ , where δn,n′ denotes the

Kronecker delta. The coefficients in each polynomial Wn are
y-dependent, in general, but they become y-independent for
|y| → +∞. We introduce the moments ωn = ωn(y; t) of W̃
and the associated moment expansion:

ωn =
∫

dz W̃ Wn, W̃ = W̃eq
+∞
n′=0ωn′ Wn′, (C.2)

(ωn′ = 0 if n′ < 0). We multiply equation (C.1) by
Wn , integrate in −∞ < z < +∞, leaving y unintegrated,
and integrate by parts over z. We get the following infinite
recurrence for all moments ωn , n = 0, 1, 2, . . ., equivalent to
equation (C.1):

∂ωn

∂ t
= −σ+∞

n′=0ωn′

[∫
dz W̃eq

∂Wn

∂z

∂Wn′

∂z

]

+ σ+∞
n′=0

[∫
dz Wn

∂

∂y

(
W̃eq

∂(Wn′ωn′)

∂y

)]
. (C.3)

Equation (C.3) gives, for large t > 0:

1

2

∂(+∞
n′=0

∫
dy ω2

n)

∂ t
= −σ

∫
dy dz W̃eq

×
[(

∂(+∞
n′=0ωn Wn)

∂z

)2

+
(

∂(+∞
n′=0ωn Wn)

∂y

)2
]

� 0.

(C.4)

In equation (C.4) (expressing irreversibility), an additional
term (arising from an integration by parts over y of the second
term in equation (C.3)) has been neglected. In fact, the
neglected term is the more negligible the larger t is, if W̃ is
going to relax towards W̃eq. The use of W̃eq (including the
full Ṽ ) in defining the Wns and the ωns is crucial, in order to
ensure the correct long-time relaxation of the moments towards
equilibrium. In the simplest approximation, we consider only
equation (C.3) for n = 0 and, moreover, in its right-hand side,
we keep only the contribution due to ω0. Then, equation (C.3)
is approximated by:

∂ω0

∂ t
� σ

[∫
dz W0

∂

∂y

(
W̃eq

∂(W0ω0)

∂y

)]
, (C.5)

W0 being independent on z. The equilibrium solution of
equation (C.5) is ω0,eq = W−1

0 = (
∫

dz W̃eq)
1/2. In spite of its

crudeness, equation (C.5) yields a non-trivial time relaxation
towards the equilibrium solution. In fact, equation (C.5) gives,
for large t > 0:

1

2

∂
(∫

dy ω2
0

)
∂ t

= −σ

∫
dy dz W̃eq

(
∂(ω0W0)

∂y

)2

� 0. (C.6)

The additional contribution −σ
∫

dy dz W̃eq(
∂(+∞

n′=1
ωn Wn )

∂z )2

in (C.4) suggest that the moments ωn with n > 0 would relax
faster than ω0. Since

∫
dz W̃eqW0Wn′ = 0 for n′ �= 0, in

equation (C.3) for n = 0 the contribution due to ωn′ s with
n′ > 0 can be easily seen to contain the integral∫

dz W̃eq(∂Wn′/∂y). The integrand of the latter integral is not
positive, so that the magnitude of that integral could be small,
due to cancellations. Then, for suitably large t > 0, the neglect
in equation (C.3) for n = 0 of the contributions due to ωn′s
with n′ > 0 does nor seem unreasonable. These arguments
would support the validity of equation (C.5).
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